#1 - Popular Age Problem

Two old friends, Jack and Bill, meet after a long time.

Three kids
Jack: Hey, how are you, man?
Bill: Not bad, got married and I have three kids now.
Jack: That's awesome. How old are they?
Bill: The product of their ages is 72 and the sum of their ages is the same as your birth date.
Jack: Cool..But I still don't know.
Bill: My eldest kid just started taking piano lessons.
Jack: Oh, now I get it.

How old are Bill's kids?

Popular Age Problem

3,3,8

Lets break it down. The product of their ages is 72. So what are the possible choices?

2, 2, 18 sum(2, 2, 18) = 22
2, 4, 9 sum(2, 4, 9) = 15
2, 6, 6 sum(2, 6, 6) = 14
2, 3, 12 sum(2, 3, 12) = 17
3, 4, 6 sum(3, 4, 6) = 13
3, 3, 8 sum(3, 3, 8 ) = 14
1, 8, 9 sum(1,8,9) = 18
1, 3, 24 sum(1, 3, 24) = 28
1, 4, 18 sum(1, 4, 18) = 23
1, 2, 36 sum(1, 2, 36) = 39
1, 6, 12 sum(1, 6, 12) = 19

The sum of their ages is the same as your birth date. That could be anything from 1 to 31 but the fact that Jack was unable to find out the ages, it means there are two or more combinations with the same sum. From the choices above, only two of them are possible now.

2, 6, 6 sum(2, 6, 6) = 14
3, 3, 8 sum(3, 3, 8 ) = 14

Since the eldest kid is taking piano lessons, we can eliminate combination 1 since there are two eldest ones. The answer is 3, 3 and 8.

#2 - Brain Twister Puzzle

2+3=8,
3+7=27,
4+5=32,
5+8=60,
6+7=72,
7+8=??

Solve it?

98

2+3=2*[3+(2-1)]=8
3+7=3*[7+(3-1)]=27
4+5=4*[5+(4-1)]=32
5+8=5*[8+(5-1)]=60
6+7=6*[7+(6-1)]=72
therefore
7+8=7*[8+(7-1)]=98
x+y=x[y+(x-1)]=x^2+xy-x

#3 - Hardest Balance Logic Puzzle

You are given a set of scales and 12 marbles. The scales are of the old balance variety. That is, a small dish hangs from each end of a rod that is balanced in the middle. The device enables you to conclude either that the contents of the dishes weigh the same or that the dish that falls lower has heavier contents than the other.
The 12 marbles appear to be identical. In fact, 11 of them are identical, and one is of a different weight. Your task is to identify the unusual marble and discard it. You are allowed to use the scales three times if you wish, but no more.

Note that the unusual marble may be heavier or lighter than the others. You are asked to both identify it and determine whether it is heavy or light.

So that the following plan can be followed, let us number the coins from 1 to 12. For the first weighing let us put on the left pan coins 1,2,3,4 and on the right pan coins 5,6,7,8.

There are two possibilities. Either they balance, or they don't. If they balance, then the different coin is in the group 9,10,11,12. So for our second one possibility is to weigh 9,10,11 against 1,2,3

(1) They balance, in which case you know 12 is the different coin, and you just weigh it against any other to determine whether it is heavy or light.
(2) 9,10,11 is heavy. In this case, you know that the different coin is 9, 10, or 11, and that that coin is heavy. Simply weigh 9 against 10; if they balance, 11 is the heavy coin. If not, the heavier one is the heavy coin.
(3) 9,10,11 is light. Proceed as in the step above, but the coin you're looking for is the light one.

That was the easy part.

What if the first weighing 1,2,3,4 vs 5,6,7,8 does not balance? Then any one of these coins could be the different coin. Now, in order to proceed, we must keep track of which side is heavy for each of the following weighings.

Suppose that 5,6,7,8 is the heavy side. We now weigh 1,5,6 against 2,7,8. If they balance, then the different coin is either 3 or 4. Weigh 4 against 9, a known good coin. If they balance then the different coin is 3, otherwise it is 4. The direction of the tilts can tell us whwther the offending coin is heavier or lighter.

Now, if 1,5,6 vs 2,7,8 does not balance, and 2,7,8 is the heavy side, then either 7 or 8 is a different, heavy coin, or 1 is a different, light coin.

For the third weighing, weigh 7 against 8. Whichever side is heavy is the different coin. If they balance, then 1 is the different coin. Should the weighing of 1,5, 6 vs 2,7,8 show 1,5,6 to be the heavy side, then either 5 or 6 is a different heavy coin or 2 is a light different coin. Weigh 5 against 6. The heavier one is the different coin. If they balance, then 2 is a different light coin.

#4 - February Maths Puzzle

Using eight eights and addition only, can you make 1000?

February Maths Puzzle

888 + 88 + 8 + 8 + 8 = 1000

#5 - 2 Eggs 100 Floors Puzzle

-> You are given 2 eggs.
-> You have access to a 100-storey building.
-> Eggs can be very hard or very fragile means it may break if dropped from the first floor or may not even break if dropped from 100 th floor.Both eggs are identical.
-> You need to figure out the highest floor of a 100-storey building an egg can be dropped without breaking.
-> Now the question is how many drops you need to make. You are allowed to break 2 eggs in the process

2 Eggs 100 Floors Puzzle

answer is: 14

Let x be the answer we want, the number of drops required.

So if the first egg breaks maximum we can have x-1 drops and so we must always put the first egg from height x. So we have determined that for a given x we must drop the first ball from x height. And now if the first drop of the first egg doesn’t breaks we can have x-2 drops for the second egg if the first egg breaks in the second drop.

Taking an example, lets say 16 is my answer. That I need 16 drops to find out the answer. Lets see whether we can find out the height in 16 drops. First we drop from height 16,and if it breaks we try all floors from 1 to 15.If the egg don’t break then we have left 15 drops, so we will drop it from 16+15+1 =32nd floor. The reason being if it breaks at 32nd floor we can try all the floors from 17 to 31 in 14 drops (total of 16 drops). Now if it did not break then we have left 13 drops. and we can figure out whether we can find out whether we can figure out the floor in 16 drops.

Lets take the case with 16 as the answer

1 + 15 16 if breaks at 16 checks from 1 to 15 in 15 drops
1 + 14 31 if breaks at 31 checks from 17 to 30 in 14 drops
1 + 13 45 .....
1 + 12 58
1 + 11 70
1 + 10 81
1 + 9 91
1 + 8 100 We can easily do in the end as we have enough drops to accomplish the task


Now finding out the optimal one we can see that we could have done it in either 15 or 14 drops only but how can we find the optimal one. From the above table we can see that the optimal one will be needing 0 linear trials in the last step.

So we could write it as

(1+p) + (1+(p-1))+ (1+(p-2)) + .........+ (1+0) >= 100.

Let 1+p=q which is the answer we are looking for

q (q+1)/2 >=100

Solving for 100 you get q=14.
So the answer is: 14
Drop first orb from floors 14, 27, 39, 50, 60, 69, 77, 84, 90, 95, 99, 100... (i.e. move up 14 then 13, then 12 floors, etc) until it breaks (or doesn't at 100)

#6 - Cross Bridge Puzzle

Four people need to cross a rickety bridge at night. Unfortunately, they have only one torch and the bridge is too dangerous to cross without one. The bridge is only strong enough to support two people at a time. Not all people take the same time to cross the bridge. Times for each person: 1 min, 2 mins, 7 mins and 10 mins. What is the shortest time needed for all four of them to cross the bridge?

17 mins

The initial solution most people will think of is to use the fastest person as an usher to guide everyone across. How long would that take? 10 + 1 + 7 + 1 + 2 = 21 mins. Is that it? No. That would make this question too simple even as a warm up question.

Let’s brainstorm a little further. To reduce the amount of time, we should find a way for 10 and 7 to go together. If they cross together, then we need one of them to come back to get the others. That would not be ideal. How do we get around that? Maybe we can have 1 waiting on the other side to bring the torch back. Ahaa, we are getting closer. The fastest way to get 1 across and be back is to use 2 to usher 1 across. So let’s put all this together.

1 and 2 go cross
2 comes back
7 and 10 go across
1 comes back
1 and 2 go across (done)

Total time = 2 + 2 + 10 + 1 + 2 = 17 mins

#7 - Cipher Puzzle

What does this message say?

G T Y O R J O T E O U I A B G T


Hint
Count the letters and try splitting the letters up into groups.

'Great Job You Got It'

This type of code is known as a Caesar Box (Julius Caesar was the first to write codes this way.) To decipher the message, simply divide the code into four groups of four (you can also divide them into groups such as 5 groups of 5 or 6 groups of 6 depending on the number of letters in the phrase), and rearrange them vertically like this...
G T Y O
R J O T
E O U I
A B G T

Then you read vertically column by column.

#8 - Unlock The Distance Puzzle

Distances from you to certain cities are written below.
BERLIN 200 miles
PARIS 300 miles
ROME 400 milesAMSTERDAM 300 miles
CARDIFF ??? miles
How far should it be to Cardiff ?

Unlock The Distance Puzzle

100 miles. Each vowel is worth 300 and each consonant is worth -100. These are totalled in each city name to give the distance

#9 - Find The Next Number

What are the next three numbers in this series?

4, 6, 12, 18, 30, 42, 60, 72, 102, 108, ?, ?, ?

The series lists numbers that are flanked by two prime numbers.

4 (3 and 5 are prime)
6 (5 and 7 are prime)
12 (11 and 13 are prime)
18 (17 and 19 are prime)
30 (29 and 31 are prime)
42 (41 and 43 are prime)
60 (59 and 61 are prime)
72 (71 and 73 are prime)
102 (101 and 103 are prime)
108 (107 and 109 are prime)

thus

138 (137 and 139 are prime), 150 (149 and 151 are prime), 180 (179 and 181 are prime

#10 - Puzzle In A Puzzle

What are the next two letters in the following series and why?
W A T N T L I T F S _ _
*Hint: Check Puzzle Title

Puzzle In A Puzzle

The letters are the first letters of the words in the question. Thus, the next two letters are A and W.